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Abstract
We investigate the quantum state transfer in a chain of particles satisfying the
q-deformed oscillators algebra. This general algebraic setting includes the spin
chain and the bosonic chain as limiting cases. We study conditions for perfect
state transfer depending on the number of sites and excitations on the chain.
They are formulated by means of irreducible representations of a quantum
algebra realized through Jordan–Schwinger maps. Playing with deformation
parameters, we can study the effects of nonlinear perturbations or interpolate
between the spin and bosonic chains.

PACS numbers: 03.67.Hk , 03.65.Fd , 02.20.Uw

1. Introduction

Spatially distributed interacting quantum systems can provide a means of transferring quantum
information from one place to another. This possibility relies on quantum interference effects
arising from the evolution of the whole system. An example along this line is given by a chain
of spin- 1

2 systems where perfect state transfer from one to another end can be realized [1, 2].
Another example is given by a chain of harmonic oscillators [3, 4]. These two examples come,
under the mathematical point of view, from the realizations of two different algebras (the Lie
algebra su(2) and the Heisenberg–Weyl algebra) corresponding to fermionic and bosonic
commutation relations. The latter can be seen as two limit cases of more general commutation
relations involving deformed algebras parameterized by one continuous parameter [5, 6].
Because of the increasing interest on the topic of state transfer in a chain of quantum systems
(see e.g. [7]), it would be interesting to investigate the state transfer in a more general algebraic
setting. In perspective, that could pave the way for a systematic study of the role of algebraic
structures in the problem of state transfer. Moreover, the deformed algebraic setting can be
used as a formal way of describing nonlinear interaction in the quantum chain.
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We start by considering a chain of n+1 sites described by a nearest-neighbor Hamiltonian
of the kind

H =
n∑

j=1

Jj

aj
†aj+1 + aj+1

†aj

2
, (1)

where Jj are the coupling constants. aj
†, aj are ladder operators whose algebraic properties

determine the nature of the quantum chain. Their canonical commutation and anticommutation
relations respectively define a bosonic and a fermionic quantum chain. Moreover, the fermionic
chain can be mapped, via the Jordan–Wigner map, onto a chain of spin-1/2 [8].

Here we consider a quantum chain of q-deformed oscillators. Several kinds of deformed
oscillator algebras have been introduced and studied in the literature. Here we are mainly
concerned with the complex (associative unital) algebra, called the (symmetric) q-oscillator
algebra and denoted by Aq [9]. Each site of the quantum chain is endowed with a copy of Aq ,
with four generators a†, a, qN, q−N subject to the relations

aa† − qa†a = q−N . (2)

q−NqN = qNq−N = 1, qNa† = qa†qN, qNa = q−1aqN . (3)

From (2), (3) the following properties can easily be derived:

a†a = [N ], aa† = [N + 1], (4)

where the notation [N ] indicates the q-number N, defined as

[N ] := qN − q−N

q − q−1
. (5)

It is suitable to recall that the algebra Aq is a ∗-algebra with involution such that a∗ = a† and
(qN)∗ = qN . A key role is played by the representation T of Aq on a Hilbert space H with an
orthonormal basis {|m〉 : m ∈ N}, defined as

T (a)|m〉 =
√

[m]|m − 1〉, T (a†)|m〉 =
√

[m + 1]|m + 1〉, T (N)|m〉 = m|m〉.
(6)

If D denotes the dense linear subspace of H spanned by the vectors |m〉, then the representation
T becomes the Fock representation of the q-oscillator algebra Aq, that is, the ∗-representation
of the ∗-algebra Aq on D.

For our investigation, we need to introduce the algebra Aext
q obtained by adjoining

formally elements qN/2 and q−N/2 to Aq . Then, a chain of two sites can be represented
by the tensor product Aext ⊗2

q of two q-oscillator algebras Aext
q whose generators are denoted

by a1 a
†
1, qN1/2, q−N1/2, a2 a

†
2, qN2/2, q−N2/2. It is relevant to note that every element of

the set a1 a
†
1, q±N1/2 commutes with any element from a2 a

†
2, q±N2/2. The great difference

with the classical case is that the q-oscillator algebra (generated by the deformed relations)
does not realize any matrix algebra but realizes, by the deformed Jordan–Schwinger map, a
suitable quantum algebra which constitutes our mathematical framework. As a consequence,
we will see that the relations for perfect state transfer can be formulated by its irreducible
representations.

This paper is organized as follows. In section 2, we present the quantum algebra
Uq(sln+1) for n � 1 by discussing some crucial properties and emphasizing its (deformed)
Jordan–Schwinger realization in terms of q-oscillator algebras. In section 3, the irreducible
representations of Uq(sln+1) are presented by composing the Jordan–Schwinger map with
the Fock representation of Aq . This framework allows us to represent the physical system
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of the chain with n + 1 sites. Section 4 is devoted to the study of state transfer through a
chain of q-deformed oscillators. For the case of a chain of spin-1/2, fermions, or bosons,
the Hamiltonian function with nearest-neighbor interaction as (1) allows perfect state transfer
if the coupling constants Jj are suitably chosen. We consider the efficacy, for the issue of
quantum state transfer, of one of the choices in the case of a chain of q-deformed oscillators.
Conclusions and possible physical applications are drawn in section 5.

2. The quantum algebra Uq(sln+1)

Before analyzing the issue of state transfer through a chain of q-deformed oscillators, we fix
our mathematical setting.

Let q be a complex number such that q �= 0 and q2 �= 1. We first consider the quantized
universal enveloping algebra Uq(sl2) of the Lie algebra sl2 of all traceless 2 × 2 matrices with
coefficients in the field of complex numbers C. Uq(sl2) can be described as the associative
algebra with the unity over C with four generators E, F, K,K−1 satisfying the defining
relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, (7)

[E,F ] = K − K−1

q − q−1
. (8)

It can be shown by induction that the relations (7) and (8) imply for every positive integer s
and t the formulae

[E,F t ] = [t]F t−1 Kq1−t − K−1qt−1

q − q−1
, (9)

[Es, F ] = [s]Es−1 Kqs−1 − K−1q1−s

q − q−1
. (10)

A key property of the algebra Uq(sl2) is that it carries a Hopf algebra structure. Indeed, we
can remind that there exists a unique Hopf algebra structure on Uq(sl2) with comultiplication
�, counit ε, antipode S

�(E) = E ⊗ K + 1 ⊗ E, �(F) = F ⊗ 1 + K−1 ⊗ F, �(K) = K ⊗ K, (11)

S(K) = K−1, S(E) = −EK−1, S(F ) = −KF, ε(K) = 1, ε(E) = ε(F ) = 0.

(12)

From now on, we refer to this algebra endowed with the Hopf algebra structure as the quantum
algebra Uq(sl2).

The quantum algebra Uq(sl2) could be supposed to be a quantum analog of the enveloping
algebra U(sl2) of the Lie algebra sl2. In fact, Uq(sl2) shares two main properties with the
classical one: it has no zero divisors (see e.g. [10, proposition 1.8]) and it has a Poincaré–
Birkhoff–Witt-type basis (see e.g. [11, section 3.1]), that is, Uq(sl2) as C-vector space is
generated by the basis {EsKlF t | s, t ∈ N − {0}, l ∈ Z}.

Unfortunately we cannot straightforwardly recover U(sl2) from Uq(sl2) by setting q = 1
(as it happens at the level of representation theory) but by considering the limit of q → 1 of a
slight reformulation of Uq(sl2) at least for q not a root of unity (see e.g. [11, section 3.1.3]). For
our goals, it is relevant to equip Uq(sl2) with an involution ∗ : Uq(sl2) → Uq(sl2) which turns

3
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Uq(sl2) into a Hopf ∗-algebra, usually called the real form of Uq(sl2) and denoted (slightly
abusing the notation) again by Uq(sl2).

The realization of Uq(sl2) in terms of the q-oscillator algebra Aext ⊗2
q (with generators

a1a1
†, q±N1/2, a2 a2

†, q±N2/2) can be allowed by the (deformed) Jordan–Schwinger map
JSq : Uq(sl2) → Aext ⊗2

q defined (similarly to the classical case) as

JSq(E) = a
†
1a2, JSq(F ) = a

†
2a1, JSq(K) = q(N1−N2)/2. (13)

By composing the (unique) algebra homomorphism JSq with the Fock representation ofAext ⊗2
q ,

irreducible representations of Uq(sl2) can be obtained. These representations give the right
setting where the relations for the state transfer in a chain with two sites can be formulated.
The same thing can be repeated when we consider a chain with n + 1 sites. Hence, we are
going on introducing the related quantum algebra, that is, the universal enveloping algebra
Uq(sln+1) of the Lie algebra sln+1 of all traceless n × n matrices.

First, consider the Lie algebra sln+1 for n � 1 and the root system � of sl2 with a basis
� formed by n roots � = {α1, . . . , αn}. According to the scalar product (·, ·) on the vector
space generated by �, we have that (α, α) = 2 for every (short) root α of �.

The quantized enveloping algebra of sln+1 is a C-algebra Uq(sln+1) with 4n generators
Eαj

, Fαj
, Kαj

, K−1
αj

with j = 1, . . . , n and relations

Kαj
Eαl

K−1
αi

= q2Eαl
and Kαj

Fαl
K−1

αj
= q−2Fαl

(j = l)

Kαj
Eαl

K−1
αj

= q−1Eαl
and Kαj

Fαl
K−1

αj
= qFαl

(|j − l| = 1)

Kαj
Eαl

K−1
αj

= Eαl
and Kαj

Fαl
K−1

αj
= Fαl

(|j − l| � 2)

Kαj
Kαl

= Kαl
Kαj

and Eαj
Fαl

− Fαl
Eαj

= δjl
K−K−1

q−q−1

Eαj
Eαl

= Eαl
Eαj

and Fαj
Fαl

= Fαl
Fαj

(|j − l| � 2)

E2
αj

Eαl
− (q + q−1)Eαj

Eαl
Eαj

+ Eαl
E2

αj
= 0 (|j − l| = 1)

F 2
αj

Fαl
− (q + q−1)Fαj

Fαl
Fαj

+ Fαl
F 2

αj
= 0 (|j − l| = 1).

When n = 1, we obviously obtain the relations (7), (8) of the quantized universal enveloping
algebra of sl2. Similar to the case of Uq(sl2), a Hopf algebra structure is carried by Uq(sln+1)

which is therefore treated as a quantum algebra: to define the comultiplication, the antipode
and the counit it is enough to apply the same relations (12), (11) (described for Uq(sl2)) to the
generators Eαj

, Fαj
, Kαj

, K−1
αj

, with j = 1, . . . , n. Furthermore, we can endow Uq(sln+1)

with an involution ∗ : Uq(sln+1) → Uq(sln+1) which turns Uq(sln+1) into a Hopf ∗-algebra.
It is worth noting that when n > 1, it is always possible to consider a subalgebra

of Uq(sln+1) which is isomorphic to Uq(sl2). More precisely, ∀i the tuple of generators
(Eαj

, Fαj
, Kαj

, K−1
αj

) satisfies the same relations (7), (8) of Uq(sl2), so we have for each
αj ∈ � the homomorphism Uq(sl2) → Uq(sln+1) that takes E to Eαj

, F to Fαj
, K to Kαj

and
K−1 to K−1

αj
. Furthermore, this homomorphism will turn out to be isomorphism onto its image

(in Uq(sln+1)).
As in the case n = 1, we can relate Uq(sln+1) with the q-oscillator algebra Aext

q . We
consider the tensor product Aext ⊗n+1

q of n + 1 copies of Aext
q whose set of generators is

{a1 a
†
1, q±N1/2, . . . , an+1 a

†
n+1, q±Nn+1/2}. As in the case of n = 1, a possible Jordan–Schwinger

realization of Uq(sln+1) is achieved by mapping

JSq(Eαj
) = a

†
j aj+1, JSq(Fαj

) = a
†
j+1aj ,

JSq(Kαj
) = q(Nj −Nj+1)/2, j = 1, . . . n.

(14)
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3. The representation theory of Uq(sln+1)

When a physical realization of the quantum algebra is considered, its representation theory
plays a crucial role. The representations of the quantum algebra Uq(sl2) are classified into
three categories according to the value of q:

i. q is generic, that is, q can take any value except q = 0, ±1 and a root of unity,
ii. q is a root of unity,

iii. q = 0 (this case is also known as the crystal base).

It is known that for q generic, all finite-dimensional representations of Uq(sl2) are
completely reducible and the irreducible ones are classified in terms of highest weights. In
particular, they can be regarded as deformation of the representations of the classical U(sl2).
When q is a root of unity, the representations of Uq(sl2) become strikingly different from the
classical case. They are not completely reducible and some finite-dimensional representations
are not the highest weight ones.

As to Uq(sln+1), its simple finite-dimensional representations are very similar to those of
sln+1 as long as q is not a root of unity. For n = 1, we have clearly all information about the
simple representations of Uq(sl2) (or equivalently Uq(sl2)-modules): for all positive integer m,
there exist exactly two simple representations of Uq(sl2) of dimension m+1 which correspond
to each simple modules over sl2. In general, when n �= 1, the quantum algebra Uq(sln+1)

has 2|�| simple representations corresponding to each simple module for sln+1. These 2|�|

modules arise from the choice of � signs.
There exist different ways to describe the representations of Uq(sln+1), but for our interest

in chains with n + 1 sites, we use an approach carrying to irreducible finite-dimensional
representations of Uq(sln+1) by composing the Jordan–Schwinger realization with the Fock
representation of the algebra Aext ⊗n+1

q (see also [11, section 5.3.4]). First, assume q is not
a root of unity. The Fock representation of the algebra Aext ⊗n+1

q acting on the Hilbert space
H⊗ n+1 with an orthonormal basis |m1, . . . ,n+1 〉 is determined by the formulae (6).

By the composition ϕ := T ◦ JSq , an infinite-dimensional representation of the quantum
algebra Uq(sl2) can be formulated by linear operators on the space D⊗ n+1

ϕ : Uq(sln+1)
JSq−→ Aext⊗n+1

q

T−→ L(D⊗n+1).

Furthermore, the basis elements |m1, . . . , mn+1〉 of H⊗ n+1 are represented as follows:

|m1, . . . , mn+1〉 = T (a
†
1)

m1

[m1]!

T (a
†
2)

m2

[m2]!
· · · · · T (a

†
n+1)

mn+1

[mn+1]!
|0, . . . , 0〉.

So, the generators Eαj
and Fαj

of Uq(sl2) for j = 1, . . . , n+1 are mapped by ϕ in this manner:

ϕ(Eαj
) |m1, . . . , mn+1〉 = T (a

†
j )T (aj+1)

T (a
†
2)

m2

[m2]!
· · · · · T (a

†
n+1)

mn+1

[mn+1]!
|0, . . . , 0〉 (15)

= √
[mj + 1][mj+1] |m1, . . . , mj + 1,mj+1 − 1, . . . , mn+1〉,

ϕ(Fαj
) |m1, . . . , mn+1〉 = √

[mj ][mj+1 + 1] |m1, . . . , mj − 1,mj+1 + 1, . . . , mn+1〉.
For any positive integer number m, the linear subspace Sm spanned by the basis elements
|m1, . . . , mn+1〉 with m1 + m2 + · · · + mn+1 = m is invariant under the representation ϕ. So,
the invariant subspace Sm of H⊗ n+1 is generated by the vectors

xm1,m2,...,mn+1 := |m1, . . . , mn+1〉.
If we consider the Bargmann–Fock realization of Aq (that is, a realization of the Fock
representation on the Hilbert space of entire holomorphic functions), then Sm represents

5
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the C-vector space of all homogenous polynomials of n + 1 variables X1, X2, . . . , Xn+1 and
degree m.

The restriction of T on the invariant subspace Sm is equivalent to the irreducible finite-
dimensional representations ϕn,m of Uq(sln+1), ϕn,m : Uq(sln+1) → End(Sm) according to that
ϕ = ⊕m∈N−{0}ϕn,m. By the action of ϕ given in (15), the generators Eαj

, Fαj
, Kαj

(with
j = 1, . . . , n) of Uq(sln+1) act by ϕn,m as follows:

Eαj
xm1,...,mn+1 =

{√
[mj + 1][mj+1] xm1,...,mj +1,mj+1−1,...,mn+1 , if mj+1 > 0;

0, if mj+1 = 0.

Fαj
xm1,...,mn+1 =

{√
[mj ][mj+1 + 1] xm1,...,mj −1,mj+1+1,...,mn+1 , if mj > 0;

0, if mj = 0.

Kαi
xm1,m2,...,mn+1 = qm1−mi+1 xm1,m2,...,mn+1 .

(16)

Every xm1,m2,...,mn+1 is a weight vector and spans every nonzero weight space in Sm (which
therefore has dimension 1). In particular, all Eαi

annihilate x̄m,0,0,...,0. Up to the scalar
multiplication this is the only vector with this property. Hence, Sm is an irreducible
representation of Uq(sln+1) (for every n � 1).

Actually, the construction of the representation space Sm holds even if q is a root of unity,
but in general the irreducibility of Sm is lost. For instance, for n = 1, if the order d of q is
bigger than m + 1, then Sm is simple and the map ϕ1,m acts in the same way described above; if
d is smaller than m + 1, then no simple finite-dimensional representation exists; if d = m + 1
we should discuss other conditions.

4. Deformed chains and perfect state transfer

We are now able to approach the study of state transfer in a chain of q-deformed oscillators.
We consider the following protocol. The ends of the quantum chain, i.e. the first and the
(n + 1)th site, are assigned respectively to the sender and the receiver. The remaining n − 1
oscillators constitute the communication channel. The quantum chain is initialized in the
vacuum state |0〉|0〉⊗n−1|0〉, defined by T (aj )|0〉 = 0. The transfer protocol begins when
the sender prepares her oscillator in a quDit state |ψ〉 = ∑D−1

m=0 cm|m〉 where, according to the
Fock representation (6), |m〉 = Km

−1/2T (a
†
1)

m|0〉, with

Km = [m][m − 1] · · · [2][1]. (17)

Then the quantum chain evolves according to the chain Hamiltonian (1). Note that the
Hamiltonian (1) preserves the total number of excitations in the q-deformed chain. We refer
to the manifold of states of the chain with m excitations as the mth Fock layer. It follows
that the chain dynamics does not mix Fock layer of different degree. After a transfer time
t the sender instantaneously decouples the (n + 1)th oscillator from the rest of the chain.
At this point, the receiver can apply a suitable phase gate U = ∑D−1

m=0 eiφm |m〉〈m| on her
oscillator to maximize the transfer fidelity [1, 4]. This local transformation at the receiver
site is independent of the state encoded by the sender and is only determined by the chain
Hamiltonian, its length and the transfer time t. The reduced state of the oscillator at the
receiver site is hence denoted by ρ(t). To evaluate the quality of the state transfer, we consider
the transfer fidelity F(t) = 〈ψ |ρ(t)|ψ〉, averaged over all possible input states.

In the classical case of a chain of spin-1/2, necessary and sufficient conditions for
obtaining a perfect state transfer have been determined; see e.g. [12] for a review. In particular,
it is possible to reach a perfect transfer if the coupling constants in the Hamiltonian (1) are
modulated according to

Jj = λ
√

j (n + 1 − j). (18)

6
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In this way, the chain evolution is formally equivalent to a rotation about the x-axis of a ‘big
spin’ expressing a collective degree of freedom of the quantum chain [2]. The same choice of
the coupling constants allows perfect state transfer in a bosonic chain [4]. In this case, in each
Fock layer the chain evolution is equivalent to a rotation of a collective spin about the x-axis.
The perfect state transfer can be seen as a consequence of the algebraic identity

eiπSx S−e−iπSx = S+, (19)

where S+, S−, Sz are the collective spin operators in the mth Fock layer, and the transfer time is
independent of the length of the chain and of the order of the Fock layer and equals t = π/λ.

Using the theory of representations of Uq(sln+1) one can explicitly show that the choice of
the coupling constants (18) allows perfect state transfer in a chain of q-deformed oscillators if
quantum information is encoded using only the vacuum state and the first Fock layer. However,
if higher Fock layer is included in the encoding, the choice (18) is no longer sufficient to allow
perfect state transfer in a chain of q-deformed oscillators. Indeed, the effects of nonlinearity
introduced by the q-deformation manifest themselves if two or more excitations are present in
the quantum chain.

4.1. PST in the first Fock layer

Here we consider the case of the transfer of a qubit state encoded as |ψ〉 = c0|0〉 + c1|1〉. In
this case, the chain dynamics only involves the vacuum state and the first Fock layer.

Let us start to discuss the case when n, m are both equal to 1, that is, we have a network
with two sites (so the quantum algebra Uq(sl2) as the mathematical model) and just one
excitation. Thus, by considering the representation map ϕ1, 1 : Uq(sl2) → S1, the matrices
determined by the action (by ϕ1, 1) of generators of Uq(sl2)

ϕ1,1(E) =
(

0 1

0 0

)
, ϕ1,1(F ) =

(
0 0

1 0

)
, ϕ1,1(K) =

(
q 0

0 q−1

)

coincide with the generators of sl2. As in the classical case (see [2]), let us choose three
variables Sx and Sy in Uq(sl2) as follows:

Sx := E + F

2
, Sy := E + F

2i
,

and S+, S− ∈ Uq(sl2) as

S+ := Sx + iSy, S− := Sx − iSy.

By applying the representation map to these new variables, we can easily note that ϕ1,1(Sx),
ϕ1,1(Sy), ϕ1,1(Sz) coincide with the generators of the Lie algebra su(2) of traceless skew-
Hermitian matrices and ϕ1,1(S+), ϕ1,1(S−) with the Pauli matrices, that is, with the generators
of the (special unitary) Lie group SU(2) of unitary matrices with unit determinant.

We now consider the case of a chain of n + 1 q-deformed oscillators. The related
mathematical setting is formed by the quantum algebra Uq(sln+1) with the generators
Eαj

, Fαj
, Kαj

(for j = 1, . . . , n) and by the representation Sm of all homogenous polynomials
of n + 1 variables and degree m. A possible strategy is that of generalizing the previous result
shown for n, m = 1 to this framework. First, we can show the analogous relations (19) for
the case of n + 1 sites and 1 excitation (with S1 being the related representation).

Proposition 4.1. Let ϕn,1 denote the representation map ϕn,1 : Uq(sl2) → End(S1) taking
the generators of Uq(sln+1), Eαj

, Fαj
, Kαj

, respectively to the (n + 1) × (n + 1) matrices
ϕn,1(Eαj

), ϕn,1(Fαj
), ϕn,1(Kαj

) ∈ Mn+1(C).

7
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Let us set Sx, Sy ∈ Uq(sln+1) as

Sx :=
n∑

j=1

√
j (n − j + 1)

Eαj
+ Fαj

2
, Sy :=

n∑
j=1

√
j (n − j + 1)

Eαj
− Fαj

2i
, (20)

and S+, S− ∈ Uq(sln+1) as

S+ := Sx + iSy, S− := Sx − iSy. (21)

Then, the relation

exp(itϕn,1(Sx)) ϕn,1(S−) exp(−itϕn,1(Sx)) = ϕn,1(S+) (22)

holds for the time value t = π .

Proof. According to the relations (16) applied to the n + 1 basis vectors of S1, x1,0,...,0,

. . . , x0,0,...,1, the matrices ϕn,1(Eαi
), ϕn,1(Fαi

), ϕn,1(Kαi
) are

ϕn,1(Eα1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 . . . 0
...

...
. . .

0 . . . 0

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , ϕn,1(Eαn
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0
...

...
. . .

0 0 . . . 1

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ϕn,1(Fα1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

1 0 . . . 0

0 . . . 0
...

...

0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , ϕn,1(Fαn
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

0 0 . . . 0

0 0 0 . . . 0
...

...

0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ϕn,1(Kα1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q . . . 0

0 q−1 . . . 0
...

...

0 0 1 0

0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , ϕn,1(Kαn
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0

0 1 . . . 0
...

...

0 0 . . . q 0

0 0 . . . q−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By choosing Sx, Sy as in (20) and S+, S− as in (21), the corresponding matrices

ϕn,1(S+) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

n 0 . . . 0

0 0
√

2(n − 1)
. . . 0

...
...

. . .
. . .

...

0 0 0
. . .

√
n

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

ϕn,1(S−) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0√
n 0 0 . . . 0

0
√

2(n − 1)
. . .

. . . 0
...

. . .
. . .

. . .
...

0 0 . . .
√

n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(24)

are shown to be compatible with the classical case, so the statement is easily proved. �
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Figure 1. The average fidelity of the state transfer versus the strength of the interaction λt in the
second Fock layer, for a chain of 10 q-deformed bosons. Different lines refer to different values of
the deformation parameter. Note that the dynamics is symmetric under the exchange q ↔ q−1.

4.2. State transfer in higher Fock layer

Here we consider the case of a quDit encoding exploiting states with higher number of
excitations. We study the transfer of one qutrit encoded at the sender site in a state of the form
|ψ〉 = c0|0〉 + c1|1〉 + c2|2〉 and numerically evaluate the average transmission fidelity as a
function of the transfer time and the deformation parameter, when the coupling constants are
chosen according to (18). For q = 1 the ‘classical’ bosonic chain is recovered, and the choice
of coupling constants is optimal. Deviations from this classical behavior appear as long as
q �= 1. The q-deformation in the algebraic structures induces a nonlinear perturbation in the
spectrum of the bosonic chain. The nonlinear effects manifest themselves when two or more
excitations are present in the quantum chain. This will in general affect the fidelity of the state
transfer with respect to the undeformed bosonic chain.

Figures 1 shows the average transfer fidelity as a function of the (adimensional) transfer
time λt , for a chain of 10 q-deformed oscillators. The undeformed chain, recovered for q = 1,
allows perfect state transfer after a minimal transfer time λt = π . For increasing value of
the nonlinearity parameter q, the maximum average fidelity decreases, while the (non-perfect)
state transfer is generally faster. Figure 2 shows the maximum average fidelity of the state
transfer and the corresponding optimal transfer time as a function of the deformation parameter.
The analysis is restricted to a temporal window λt ∈ [0, 2π ], corresponding to the period of
the undeformed dynamics [4]. Note that, from the form of the q-number (5), the dynamics is
symmetric under the exchange q ↔ q−1.

In some cases, the introduction of the q-deformation at the algebraic level can be used to
interpolate, varying the value of the deformation parameter q, between the ‘classical’ cases of
a chain of spin-1/2 and a bosonic chain. For instance, by choosing q = e±iπ/d , for any integer
d, it is possible to show that the Fock space is the direct sum of d-dimensional subspace,
which are not connected by the ladder operators [13]. This is a consequence of the deformed
commutation relations, which implies T (ak)

d = 0, T (ak
†)d = 0. From this point of view,

one can consider the chain of deformed oscillators with q = exp(±iπ/d) as a chain of d-level
systems with non-equally spaced energy levels. Hence, by varying the integer d, one can

9
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Figure 2. For a chain of 10 q-deformed bosons, the figure shows the maximum average fidelity
(top) of the state transfer in the second Fock layer and the corresponding optimal (adimensional)
transfer time λtopt (bottom), as a function of the deformation parameter q. The analysis is restricted
to a temporal window λt ∈ [0, 2π ], corresponding to the period of the undeformed dynamics [4].
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Figure 3. The average fidelity of the state transfer versus the strength of the interaction λt in the
second Fock layer, for a chain of 10 q-deformed bosons. The deformation parameter is q = eiπ/d .
Different lines refer to different values of the deformation parameter. Note that the classical
bosonic case is recovered in the limit d → ∞.

interpolate between the spin- 1
2 case, obtained for d = 2, and the bosonic case, recovered in

the limit of d → ∞. We consider the case d > 2, since for d = 2 the condition T (a†)2 = 0
(Pauli principle) avoids two excitations on the same site. Figure 3 shows the average fidelity
of the state transfer for a chain of q-deformed oscillators as a function of the transfer time, for
several values of the effective Hilbert space dimension d. The minimal dimension in which
the two-excitation encoding can be defined is d = 3. Note that the bosonic limit is recovered
for d → ∞, in which case perfect state transfer happens for a minimal transfer time λt = π .
Finite values of d lead to a smaller transfer fidelity and a longer optimal time transfer. Figure 4
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Figure 4. For a chain of 10 q-deformed bosonic oscillators with q = eiπ/d , the figure shows
the maximum average fidelity (top) in the second Fock layer, and the corresponding optimal
(adimensional) transfer time λtopt (bottom), as a function of the deformation parameter d. Note
that the classical bosonic case is recovered in the limit d → ∞.

shows the maximum average transfer fidelity and the corresponding optimal transfer time as
a function of the effective Hilbert space dimension d.

5. Conclusions

We have considered the issue of state transfer through a quantum chain of q-deformed
oscillators. For real values of the deformation parameter, the physical consequence of the
algebraic deformation is the appearance of non-harmonicity in the energy spectrum of the
chain. The q-deformation can be hence interpreted as a formal way to describe a bosonic chain
with nonlinear interactions. If only states with one excitation are involved, the nonlinearities do
not play any role and the q-deformed dynamics is identical to its classical, linear, counterpart.
More generally, if the considered protocol involves states of the chain with two or more
excitations, we have found that the nonlinear effects decrease the fidelity of the state transfer,
while however shortening the optimal transfer time. Similar results were recently presented
in [4], where the state transfer through a bosonic chain described by the (nonlinear) Bose–
Hubbard Hamiltonian was considered. In our analysis, we have chosen the coupling constants
according to (18), a choice which is optimal in the undeformed case. Clearly, alternative
q-dependent choices of the coupling constants could lead to better performances.

Finally, if the deformation parameter is chosen to be a root of the unity of order d, the
q-deformed oscillator can be used to simulate a d-level quantum system with non-equally
spaced stationary level. In this case, varying the deformation parameter from d = 2 to
d → ∞ one can describe a family of quantum chain interpolating between a chain of spin-1/2
and the bosonic chain.
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